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Abstract

In order to investigate the effect of the number of nodal diameters on non-linear interactions in
asymmetric vibrations of a circular plate, a primary resonance of the plate is considered. The plate is
assumed to have an internal resonance in which the ratio of the natural frequencies of two asymmetric
modes is three to one. The response of the plate is expressed as an expansion in terms of the linear, free
oscillation modes, and its amplitude is considered to be small but finite, and the method of multiple scales is
used. In view of the corrected solvability conditions for the responses, it has been found that in order for the
modes to interact, the ratio of the numbers of nodal diameters of two modes must be either three to one or
one to one. In this study the one-to-one case, in which the modes have the same number of nodal diameters,
is examined. The non-linear governing equations are reduced to a system of autonomous ordinary
differential equations for amplitude and phase variables by means of the corrected solvability conditions.
The steady state responses and their stability are determined by using this system. The result shows very
complicated interactions between two modes by telling existence of non-vanishing amplitudes of the mode
not directly excited.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Since Sridhar et al. [1] opened the doors to non-linear modal interactions of symmetric
vibrations of circular plates, Hadian and Nayfeh [2], and Lee and Kim [3] followed their idea to
investigate the interactions between symmetric modes of circular plates. Sridhar et al. [4]
generalized the idea to derive solvability conditions that include asymmetric modes as well as
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symmetric modes. Yeo and Lee [5] found that these conditions were misderived, and then
corrected the conditions. They observed that in the absence of internal resonance, the steady state
response can have not only the form of standing wave but also the form of traveling wave. This
observation is a remarkable contrast to Sridhar et al. [4], in which the steady state response can
only have the form of standing wave. It is believed that the validity of this observation may be well
supported by Nayfeh and Vakakis [6], who observed the coexistence of subharmonic standing and
traveling waves in the case of subharmonic resonance.

Using the corrected solvability conditions, Lee and Yeo [7] investigated the interactions of
circular plates on an elastic foundation with internal resonance (W & 3wcp), in which the first
subscript refers to the number of nodal diameters and the second subscript the number of nodal
circles including boundary. In view of the corrected solvability condition, it has been found that in
order for two asymmetric modes to interact, the ratio of the numbers of nodal diameters of two
modes must be either three to one (N = 3C) or one to one (N = C). They considered the case of
N = 3C, which implies that the ratio of the numbers of nodal diameters of two modes is three to
one.

In order to investigate the effect of the number of nodal diameters on non-linear interactions in
asymmetric vibrations of the plate, in this study we examined the one-to-one case (N = C), in
which the modes have the same number of nodal diameters. Dynamic analogue of von Karman
equations is used to study a primary resonance of the plate. The response of the plate is expressed
as an expansion in terms of the linear, free oscillation modes, and its amplitude is considered to be
small but finite, and the method of multiple scales is used. The non-linear governing equations are
reduced to a system of autonomous ordinary differential equations for amplitude and phase
variables by means of the corrected solvability conditions. The steady state responses and their
stability are determined by using this system.

2. Equations of motion and steady state responses

The equations governing the free, undamped oscillations of non-uniform circular plates were
derived by Efstathiades [8]. These equations are simplified to fit the special case of uniform plates,
and damping and forcing terms are added. Then the non-dimensionalized equations of motion of
a circular plate on an elastic foundation shown in Fig. 1 can be given as follows [4,9]:
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K 7.
Fig. 1. Schematic diagram of a clamped circular plate on an elastic foundation.

e = 12(1 —v?)h?/R?, ¢ is the damping coefficient, p* is the forcing function, K is the stiffness of
the foundation, v is the Poisson ratio, / is the thickness, R is the radius, w is the deflection of the
middle surface, F is the force function which satisfies the in-plane equilibrium conditions (in-plane

inertia is neglected), and
*# 1o 1\
4 _
=l=+-=+=—) . 4
v <8r2 + ror + r? 892> @
The boundary conditions are developed for the plates which are clamped along a circular edge.
For all r and 0,

0
w=0, =0, atr=1, (5a,b)
or
0*F 10F 1 &*F
R —_t——— 1 =0 tr=1 6
or? v<r6r+r2802> - AT ’ (6a)

3 2 3 2
FF 18F 10F 2+4v &°F 3+V8F:o, at r=1, (6b)

8r3+r6r2 2 8r+ 2 ora0: B a0

where R is assumed to be a non-dimensionalized radius, 1. In addition, it is necessary to require
the solution to be bounded at r = 0.
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The forcing function p* is considered as follows:

o0 0
P 0.0 = | Pom®om +2 > Punpy 0810 + Tum) | cOS A, (7)

m=1 nm=1

where the linear symmetric vibration modes ¢,,,(r) correspond to the natural frequencies ,,, (see
Appendix A). In these expressions, the first subscript n refers to the number of nodal diameters
and the second subscript m refers to the number of nodal circles including boundary. And 1 is
excitation frequency and P, are excitation amplitudes.

To obtain the first order approximate solution of the Egs. (1)—(6) we use the method of multiple
scales. We expand w and F as follows:

w(r,0,5;8) = > dwi(r,0,To, T, ...), (8)
j=0

F(r,0,t;6) = Y &F(r,0,To, T, ...), )
J=0

where T,, = &"t.
Following Sridhar et al. [4], we can have the first order solution as follows:

0 o0
i 9 i mT R —i mnT
wo = Z Z d)nm(r)unm(TOa T], .. _)eln 5 Upm = Anmelwn 0 + Bnme 1 0, (10)

n=—00 m=1

where the w,,, are linear natural frequencies, the ¢,,,(r) are linear symmetric vibration modes (see
Appendix A), and the responses A4,,, and B, are complex functions of the all 7} for k>1.

For a circular plate without an elastic foundation, i.e., the case of K = 0, Yeo and Lee [5] had
corrected solvability conditions for the responses derived by Sridhar et al. [4]. Since value of K
does not change solvability conditions at all, we refer to Yeo and Lee [5] for the conditions as
follows:

0 o0
— 2iwg(D1 A + cuAw) + Akl{ S vkt Awm Aum + BunBun) — Vk/k/Akzz‘_lkz}

n=—0o0 m=1
U\? — —
+2(1 - 5k0)Bkl{Z Pkt Atom Blom — fklklAlekl} +NE+RE =0, (11a)
m=1
2iwi(D1 B + craBia) + Bkl{ S Ykt AwmAum + BunBum) — szleszkl}
n=—o0 m=1
- U\) - -
+2(1 - 5k0)Ak1{Z Pt Akm Brom — “ﬁk/klAlekz} +NE+RE =0, (11b)
m=1

where D) = 0/0T), o are Kronecker delta, ¢;; are modal damping coefficients, Rﬁ,’B are terms
due to internal resonances, if any, N, ,fl’B are terms due to the external excitation, if any, and y;,,,,
and 7y, are constants given in the Appendix A.
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It is noted that these solvability conditions are different from those by Sridhar et al. [4]. Terms
including expressions y;; and 2(1 — dx0) in Eqgs. (11) are added to their solvability conditions. The
former (including 7y;;;) can contribute to the dynamics whether the modes involved are
asymmetric or not. The latter (including 2(1 — Jy¢)) can contribute to the dynamics only when the
modes involved are asymmetric (k#0). In this study we consider the internal resonance condition
including two distinct natural frequencies (w¢p and wpyys) corresponding to asymmetric modes.
Then the ratio of two frequencies must be three to one (wyy ~3wcp). Furthermore, the terms
R,f;B (representing modal interactions) vanish unless the ratio of the numbers of nodal diameters
of two modes is either three to one (N = 3C) or one to one (N = C). These facts have been
clarified by observing Eq. (29) and Table Al in Yeo and Lee [5]. In view of the three-to-one case
investigated by Lee and Yeo [7], it has been found that terms including 2(1 — d;9) vanish even
though all modes involved are asymmetric. We observed that in order for the terms not to vanish
the ratio must be one to one. This is why we need to investigate the effect of the number of nodal
diameters on non-linear interactions in asymmetric vibrations of the plate by examining the one-
to-one case (N = C).

In order to consider the internal resonance condition wcy =~ 3wcp and the external resonance
condition A~ w¢p, we introduce detuning parameters, ¢; and ¢,, as follows:

wcy = 3wcep +¢e01, A= wcp + €or. (12,13)
In this case

Ry = OcuAgpBepe ™1, REy, = QcyAcpBpe ™, (14a,b)
Rep = (QcpAcpBepAcm + QcmBepBem)e™ !, (14c)
RZ, = (OcpAcpBcepBem + QCMAZCDIZICM)e_iGI I (14d)
R =0 for ki#CD, CM, (14e)
NgD — %PCDei(a'le -HCD)’ NgD — %PCDe—i(UzTI—rCD) (15&, b)
NP =0 for ki+#CD, (15¢)

where the Qcys and Q¢p are constants given in Appendix A. Next we let
Apm = %anmem”mp By = %bnmei'g"m: (16a, b)

where the ay,, by, 0um and f,,, are real functions of 7. Substituting Eqs. (14)—(16) into (11) and
separating the result into real and imaginary parts, we obtain

wdyy + crar) — 31 — 0x0)busy

— kO (Qcpacpbepacy sin fiy + OQcubepbca sin fip)

+ LSrcdmQcemagpbep sin fig — L SkcdipPep sin py, = 0, (17a)
(bl + cribia) + 3(1 — xo)awiSy,

— L 6kcdin(Qcpacpbepben sin fip + Qcypagpaca sin fla)

+ L 6kcdm Qcmacpby sin fig —  dxcdipPep sin plop = 0, (17b)
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1o 2 1 a
k1% + 5 @ISkt — Vi) + 5 (1 — 0k0)biiSiy
1 - 2 -
+3 OkcOip (QCDaCDbCDaCM cos fig + Qcmbepbem cos ,UB)

+ L 8kcomQemagpbep €08 fia + L SrcdipPep cos uéy, = 0, (17¢)

wribriBly + & bri(skr — yiabiy) + 5 (1 — dro)awsdy,
+ 1810 (Qcpacpbepbey cos fig + Qemagpacy €os fla)
+ L Skcom Qcmacpbp cos fip + 5 Skcdip Pep cos pily, = 0, (17d)

where primes denote differentiation with respect to 77,

o0 o0
Skl = z Zyklnm(aim + bim)’ (182[)
n=—o0 m=1
S = Z Ptkm@hmBrm S0 — i — %kt + Bryp)s (18b)
m=1
-
§/i[ = Z(l - 51n/)'}/)‘klkmakmbkm COS(OCkm - ﬁkm — O + ﬁk]); (180)
m=1
1oy =Ty +tcp — dcp,  pop =Tt —tcp — Peps (19a,b)
fua=01Ty —20cp — Bep +ocm,  fis=01T1 —ocp —2PBcp + Beu- (19¢c,d)

Each equilibrium solution of the system of autonomous ordinary differential equations to be
obtained from system (17)—(19) is corresponding to a steady state response. The steady state
response to the first order approximation is given as follows:

W = Wcp + wWcem + 0(8), (20)
where

wep = ¢eplacp cos(At — ey + CO + tep) + bep cos(At — plyy — CO — tep)}, (21)

wem = ey {acm cos(3it — 2ulp, — ulp + fig + CO+1ep)
+bey cos(3t — ey — 2pbp + fip — CO — Tcp)}. (22)

Each of the wep and weys is a superposition of two traveling wave components.
If acp = bep, acu = bem, pep = Wp and fiq = fip, Eqs. (21) and (22) can be reduced as
follows:

wep = 2¢cpacp cos(At — ugp)cos(CO + tep), (23)

wem = 2¢ cpracm cos(3At — 3utp + fia)cos(CO + tep). (24)

Now each of the wep and wey, becomes a standing wave component.
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3. Numerical example

Pursuing the internal resonance condition wcys ~ 3wcep, we consider the case of C =1 for the
convenience. In order to choose a proper value of the stiffness of the elastic foundation, K, we plot
the variations of the natural frequencies w3, and 3w;p with K in Fig. 2. For a numerical example
we choose the case of K = 1239~ K™ (intersection of w3 and 3w, in Fig. 2), which gives natural
frequencies w;; = 41.7733 and w3 = 125.348. Then we have an internal resonance condition
w13~ 3w, with the internal detuning parameter eo; = 0.0278555. Considering a primary
resonance A~ wp; (the lower mode is directly excited) and substituting the relations of C = D =
1 and M = 3 into Egs. (17)-(19), we obtain a simplified system of ordinary differential equations
for the non-decaying amplitudes as follows:

w11(d); + cnan) + 2sbnasbis sin(og — By — oz + Pi3)
— % (Q11a11b11a13 sin ﬂA + Q13b%1b13 sin ﬂB) — %Pll sin ,ullll = 0, (25&)

6011(17/11 +ciibn) — %771113611161131)13 sin(oey — By — o3 + Bi3)

— 1 (Qnanbiibis sin fip + Or3aars sin fig) — 1 Pyysinpf) =0, (25b)

oano, +gan {rinitaq, +2b7) + 291115(at; + bis) }
+ %3711131?116113[?13 cos(orr — By — o1z + fi3)
+ 1 (Onanbnaiz cos iy + Q13bj biz cos fig) + 1 Py cos uf, =0, (25¢)

o1 b By +§b11{y1111(2a%1 +b7) + 271113(a7; + b1y)
+ if11136111a13b13 cos(orr — By — 13 + fi3)

+1(Quiaiibiibiz cos fip + Qizatiars cos fig) +1 Py cos il =0, (25d)
wi3(d3 + ci3az) — §Fisnanbubis sin(on — Bry — oz + Bi3) + 4 Qzat by sin iy =0, (26a)

wi3(bis + c13bi3) + 3 Finanbnas sin(ey — By — oz + fi3) +1 Quzan bty sinfig =0,  (26b)
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Fig. 2. Variations of the natural frequencies w,, and 3w;p with the stiffness of the foundation, K.
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ot Las{2 T+ b1 + v1sisat; + 2675) )
w13d1303 + 86113{ LT 11) T 713134473 13
” 2 o
+ %V13116111b11b13 cos(arp — By — o3 + Bi3) + % Quzay by cos fiy =0,

o13b13Bis + §b13{2y1311(af, + b7)) + 71313a1; + b1y) }

1a 1 2 N
+ zV13116111b116113 cos(ayr — By — oz + Bi3) + 3 Quzay1by, cos fip = 0,
b
iy =Ty + 1y —oap,  pyy =0Ty — 111 — By,

fg=01T) — 2001 — By +ou3,  fp=o01T1 — o1 — 2y + Bys.

(26¢)

(26d)
(27a,b)

(27¢,d)

Each equilibrium solution of a system of autonomous ordinary differential equations to be
obtained from systems (26) and (27) is corresponding to a steady state response (¢}, = b}, =

a3 =bj3 = :“7/1 = N?ll =y = fip=0).

In Fig. 3 the amplitudes a1, b11, aj3 and by3 are plotted as functions of the external detuning
parameter o, = 6> when {v, ¢, ec, ¢Pyy, t11} ={1/3, 0.001, 0.001, 5.0, 0.0}. Solid and dotted lines
denote, respectively, stable and unstable responses. The abbreviations SS, US, ST and UT denote,
respectively, stable standing, unstable standing, stable traveling and unstable traveling wave

components.

15F
10 L
_Qa N
2
© 05F
o ST\ AT ST,
it O v 1 A W
0.00 G, 0s Gc 6o 0.05 6 0 05 Gy G 0y G 0.3, 0.10
(b) %

Fig. 3. Variations of the amplitudes with detuning parameter 6, when ¢P;; = 5. ——, stable; - - - -, unstable.
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The response curves are shown to have two pitchfork, ten saddle-node and seven Hopf
bifurcation points. At one of two pitchfork bifurcation points, 6,4(0.012797), the stable standing
wave component SS; bifurcates into two stable traveling wave components ST; and ST», and one
unstable standing wave component US. At the other pitchfork bifurcation point, ¢5(0.021699),
the unstable standing wave component US appears to bifurcate into two stable traveling wave
components ST; and ST, and one unstable standing wave component US. In fact, at ¢, =
0.021675 not identified in the figure, the unstable component US becomes a stable component,
which bifurcates into ST; and ST, At four saddle-node bifurcation points out of 10, 6p
(0.042807), 6 (0.055153), 6 (0.067977) and 6, (0.078646), one stable response and one unstable
response generate. At the other saddle-node bifurcation points (not marked in the figure), two
unstable responses generate.

It is observed that only traveling wave components experience Hopf bifurcations. The
components change their stability at seven Hopf bifurcation points ¢¢ (0.022026), 67 (0.060973),
6 (0.067977), 61 (0.072787), 6k (0.078647), 61 (0.088036) and G4, (0.091731). For instance, when
Gy <dy<dk and 6 <4, <4y, there exist seven stable steady state responses, which consist of six
traveling wave components and one standing wave component. When 6g <6, <6p, 66<62<6p,
G1<6G,<6y, g <G2<6r and 6, <)y, there exist five stable steady state responses, which consist
of four traveling wave components and one standing wave component. When 63<6,<6¢ and
Gp <63y <6E, there exist four stable steady state responses, which are traveling wave components.
When 6r <6y <6 and 6y <d, <47, there exist three stable steady state responses, which consist of
two traveling wave components and one standing wave component. When 6y < 6,, 6 <6, <47 and
Gk <Gy, two pairs of traveling wave components, {STs,STs}, {ST7,STs} and {STy, ST},
respectively, become unstable. Another pair of stable components {ST;;, ST} loses stability at
6, = 61 and &),. These instabilities imply that there may exist quasi-periodic or chaotic responses
generated from these pairs. Exploring this type of response, however, is beyond the scope of this work.

Conclusively, non-vanishing amplitudes of indirectly excited modes (a3 and b;3) tell us modal
interactions between lower (w;) and higher (w;3) modes. The characteristics of the responses in
this work are much more complicated than the three-to-one case (N = 3C) [7].

4. Conclusions

In order to investigate the effect of the number of nodal diameters on non-linear interactions in
asymmetric vibrations of a circular plate on an elastic foundation, a primary resonance of the
plate is considered. The plate is assumed to have an internal resonance in which the ratio of the
natural frequencies of two asymmetric modes is three to one. It has been found that in order for
the modes to interact, the ratio of the numbers of nodal diameters of two modes must be either
three to one or one to one.

In this study the one-to-one case, in which the modes have the same number of nodal diameters, is
examined. More precisely, we consider a primary resonance case with an internal resonance
condition w3~ 3wi; and an external resonance condition Axw;; (the lower mode is directly
excited). Non-vanishing amplitudes of indirectly excited modes (a;3 and by3) tell us modal
interactions between lower (w;;) and higher (w3) modes. The characteristics of the interactions are
much more complicated than the three-to-one case (N = 3C or w3 ~3wy) studied previously [7].
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Appendix A
1. Eq. (7):
The linear symmetric vibration modes ¢,,,(r) corresponding to the natural frequencies w,,, are
given by
In(m)
¢nm = Knm |:Jn(’/,nmr) — In(nnmr) . (Al)
L (1)
The x,,, are chosen so that
1
/ rg? dr=1. (A.2)
0

The function J,, are Bessel function of the first kind of order » and the function I, are modified
Bessel function of the first kind of order n. the 1,,, are the roots of L,()J!(17) — I(n)J,(n) = 0. The
natural frequencies w,, are related with the eigenvalues 7,,, by the equation ®?, =n* + K.

¢7nm = ¢nma WD—pm = Wpm and Afnm - Bnm-
2. Eq. (11):

Viewm = T(kl, kl,nm, —nm) + I'(kl, —nm, ki, nm) + I'(kl,nm, —nm, k), (A.3)
Vitem = T(kl, kem, km, —kl) + T'(kl, —kl, km, km) + T'(kl, km, —kl, km), (A4)

where

I'(kl, cd,nm, pq) = Z G(nm, pq; ab)G(cd,ab;kl), a=k—c¢, p=k—c—n, (A.S)

b=1
1
G(nm, pq; ab) = &' / 1, E(nm, pq) dr, (A.6)
0
1
Gled, ab; k) = / r¢y E(cd, ab) dr, (A.7)
0
_ 1 1
B p) =2 (1= 22 (61, 22) = L@l + 5z Pt + ) A

= " 2 " , 2 2
E(cd, ab) = ¢}fd <%h - %lﬁab> + @ <<l5cd - 07 ¢cd> + %(‘P;k - %%b) <¢Ld - %¢cd> . (A9)

and

Wap = Rap[Ja(Capr) — Capla(Capr)]. (A.10)
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The &, are chosen so that
1
/ npl, dr =1, (A.11)
0

By = [a(a + 1)(V + 1) - éib]Ja(éab) - éab(v + I)Jd—l(éab) (A]Z)

[a(a + DO + 1) + &) — Eap(v + DIm1(Ep)
and the &, are the roots of
a*(a+ DO+ DHaCw) = CalaCap)] — @ (v + Dac1CEap) — Eapla1(Eap)]
+ al[a(Cap) + EalaCan)] — Epplla1(Eap) + Capla1(Ea)] = 0. (A.13)
3. Eq. (14):

Ocy = 2I'(CM, CD, CD, —CD) + I'(CM, —CD, CD, CD), (A.14)

Ocp = 2{I'(CD, —CD, CD, CM) + I(CD, CD, CM, —CD) + I'(CD, CM, CD, —CD)}.  (A.15)
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