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Abstract

In order to investigate the effect of the number of nodal diameters on non-linear interactions in
asymmetric vibrations of a circular plate, a primary resonance of the plate is considered. The plate is
assumed to have an internal resonance in which the ratio of the natural frequencies of two asymmetric
modes is three to one. The response of the plate is expressed as an expansion in terms of the linear, free
oscillation modes, and its amplitude is considered to be small but finite, and the method of multiple scales is
used. In view of the corrected solvability conditions for the responses, it has been found that in order for the
modes to interact, the ratio of the numbers of nodal diameters of two modes must be either three to one or
one to one. In this study the one-to-one case, in which the modes have the same number of nodal diameters,
is examined. The non-linear governing equations are reduced to a system of autonomous ordinary
differential equations for amplitude and phase variables by means of the corrected solvability conditions.
The steady state responses and their stability are determined by using this system. The result shows very
complicated interactions between two modes by telling existence of non-vanishing amplitudes of the mode
not directly excited.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Since Sridhar et al. [1] opened the doors to non-linear modal interactions of symmetric
vibrations of circular plates, Hadian and Nayfeh [2], and Lee and Kim [3] followed their idea to
investigate the interactions between symmetric modes of circular plates. Sridhar et al. [4]
generalized the idea to derive solvability conditions that include asymmetric modes as well as
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symmetric modes. Yeo and Lee [5] found that these conditions were misderived, and then
corrected the conditions. They observed that in the absence of internal resonance, the steady state
response can have not only the form of standing wave but also the form of traveling wave. This
observation is a remarkable contrast to Sridhar et al. [4], in which the steady state response can
only have the form of standing wave. It is believed that the validity of this observation may be well
supported by Nayfeh and Vakakis [6], who observed the coexistence of subharmonic standing and
traveling waves in the case of subharmonic resonance.
Using the corrected solvability conditions, Lee and Yeo [7] investigated the interactions of

circular plates on an elastic foundation with internal resonance ðoNME3oCDÞ; in which the first
subscript refers to the number of nodal diameters and the second subscript the number of nodal
circles including boundary. In view of the corrected solvability condition, it has been found that in
order for two asymmetric modes to interact, the ratio of the numbers of nodal diameters of two
modes must be either three to one (N ¼ 3C) or one to one (N ¼ C). They considered the case of
N ¼ 3C; which implies that the ratio of the numbers of nodal diameters of two modes is three to
one.
In order to investigate the effect of the number of nodal diameters on non-linear interactions in

asymmetric vibrations of the plate, in this study we examined the one-to-one case (N ¼ C), in
which the modes have the same number of nodal diameters. Dynamic analogue of von Karman
equations is used to study a primary resonance of the plate. The response of the plate is expressed
as an expansion in terms of the linear, free oscillation modes, and its amplitude is considered to be
small but finite, and the method of multiple scales is used. The non-linear governing equations are
reduced to a system of autonomous ordinary differential equations for amplitude and phase
variables by means of the corrected solvability conditions. The steady state responses and their
stability are determined by using this system.

2. Equations of motion and steady state responses

The equations governing the free, undamped oscillations of non-uniform circular plates were
derived by Efstathiades [8]. These equations are simplified to fit the special case of uniform plates,
and damping and forcing terms are added. Then the non-dimensionalized equations of motion of
a circular plate on an elastic foundation shown in Fig. 1 can be given as follows [4,9]:

@2w

@t2
þ ðr4 þ KÞw ¼ e Lðw;F Þ � 2c

@w

@t
þ p�ðr; y; tÞ

� �
; ð1Þ

r4F ¼
1

r

@2w

@r @y
�

1

r2
@w

@y

� �2

�
@2w

@r2
1

r

@w

@r
þ

1

r2
@2w

@y2

� �
; ð2Þ

where

Lðw;F Þ ¼
@2w

@r2
1

r

@F

@r
þ

1

r2
@2F

@y2

� �
þ

@2F

@r2
1

r

@w

@y
þ

1

r2
@2w

@y2

� �

� 2
1

r

@2F

@r@y
�

1

r2
@F

@y

� �
1

r

@2w

@r@y
�

1

r2
@w

@y

� �
; ð3Þ

ARTICLE IN PRESS

W.K. Lee et al. / Journal of Sound and Vibration 268 (2003) 1013–10231014



e ¼ 12ð1� n2Þh2=R2; c is the damping coefficient, p� is the forcing function, K is the stiffness of
the foundation, n is the Poisson ratio, h is the thickness, R is the radius, w is the deflection of the
middle surface, F is the force function which satisfies the in-plane equilibrium conditions (in-plane
inertia is neglected), and
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The boundary conditions are developed for the plates which are clamped along a circular edge.
For all t and y;

w ¼ 0;
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where R is assumed to be a non-dimensionalized radius, 1. In addition, it is necessary to require
the solution to be bounded at r ¼ 0:
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Fig. 1. Schematic diagram of a clamped circular plate on an elastic foundation.

W.K. Lee et al. / Journal of Sound and Vibration 268 (2003) 1013–1023 1015



The forcing function p� is considered as follows:

p�ðr; y; tÞ ¼
XN
m¼1

P0mf0m þ 2
XN

n;m¼1

Pnmfnm cosðnyþ tnmÞ

" #
cos lt; ð7Þ

where the linear symmetric vibration modes fnmðrÞ correspond to the natural frequencies onm (see
Appendix A). In these expressions, the first subscript n refers to the number of nodal diameters
and the second subscript m refers to the number of nodal circles including boundary. And l is
excitation frequency and Pnm are excitation amplitudes.
To obtain the first order approximate solution of the Eqs. (1)–(6) we use the method of multiple

scales. We expand w and F as follows:

wðr; y; t; eÞ ¼
XN
j¼0

ejwjðr; y;T0;T1;yÞ; ð8Þ

F ðr; y; t; eÞ ¼
XN
j¼0

ejFjðr; y;T0;T1;yÞ; ð9Þ

where Tn ¼ ent:
Following Sridhar et al. [4], we can have the first order solution as follows:

w0 ¼
XN

n¼�N

XN
m¼1

fnmðrÞunmðT0;T1;yÞeiny; unm ¼ Anme
ionmT0 þ %Bnme

�ionmT0 ; ð10Þ

where the onm are linear natural frequencies, the fnmðrÞ are linear symmetric vibration modes (see
Appendix A), and the responses Anm and Bnm are complex functions of the all Tk for kX1:
For a circular plate without an elastic foundation, i.e., the case of K ¼ 0; Yeo and Lee [5] had

corrected solvability conditions for the responses derived by Sridhar et al. [4]. Since value of K

does not change solvability conditions at all, we refer to Yeo and Lee [5] for the conditions as
follows:
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where D1 ¼ @=@T1; dk0 are Kronecker delta, ckl are modal damping coefficients, RA;B
kl are terms

due to internal resonances, if any, NA;B
kl are terms due to the external excitation, if any, and gklnm

and #gklkm are constants given in the Appendix A.
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It is noted that these solvability conditions are different from those by Sridhar et al. [4]. Terms
including expressions gklkl and 2ð1� dk0Þ in Eqs. (11) are added to their solvability conditions. The
former (including gklkl) can contribute to the dynamics whether the modes involved are
asymmetric or not. The latter (including 2ð1� dk0Þ) can contribute to the dynamics only when the
modes involved are asymmetric (ka0). In this study we consider the internal resonance condition
including two distinct natural frequencies (oCD and oNM) corresponding to asymmetric modes.
Then the ratio of two frequencies must be three to one ðoNME3oCDÞ: Furthermore, the terms
RA;B

kl (representing modal interactions) vanish unless the ratio of the numbers of nodal diameters
of two modes is either three to one (N ¼ 3C) or one to one (N ¼ C). These facts have been
clarified by observing Eq. (29) and Table A1 in Yeo and Lee [5]. In view of the three-to-one case
investigated by Lee and Yeo [7], it has been found that terms including 2ð1� dk0Þ vanish even
though all modes involved are asymmetric. We observed that in order for the terms not to vanish
the ratio must be one to one. This is why we need to investigate the effect of the number of nodal
diameters on non-linear interactions in asymmetric vibrations of the plate by examining the one-
to-one case (N ¼ C).
In order to consider the internal resonance condition oCME3oCD and the external resonance

condition lEoCD; we introduce detuning parameters, s1 and s2; as follows:

oCM ¼ 3oCD þ es1; l ¼ oCD þ es2: ð12; 13Þ

In this case

RA
CM ¼ QCMA2

CDBCDe
�is1T1 ; RB

CM ¼ QCM %ACD %B2
CDe

is1T1 ; ð14a;bÞ

RA
CD ¼ QCD %ACD %BCDACM þ QCM %B2

CDBCM


 �
eis1T1 ; ð14cÞ

RB
CD ¼ QCDACDBCD %BCM þ QCMA2

CD
%ACM


 �
e�is1T1 ; ð14dÞ

RA;B
kl ¼ 0 for klaCD; CM; ð14eÞ

NA
CD ¼ 1

2
PCDe

iðs2T1þtCDÞ; NB
CD ¼ 1

2
PCDe

�iðs2T1�tCDÞ ð15a;bÞ

NA;B
kl ¼ 0 for klaCD; ð15cÞ

where the QCM and QCD are constants given in Appendix A. Next we let

Anm ¼ 1
2

anme
ianm ; Bnm ¼ 1

2
bnme

ibnm ; ð16a;bÞ

where the anm; bnm; anm and bnm are real functions of T1: Substituting Eqs. (14)–(16) into (11) and
separating the result into real and imaginary parts, we obtain

oklða0
kl þ cklaklÞ � 1

4
ð1� dk0Þbkl #s

s
kl

� 1
8
dkCdlD QCDaCDbCDaCM sin *mA þ QCMb2

CDbCM sin *mB


 �
þ 1

8
dkCdlMQCMa2

CDbCD sin *mA � 1
2
dkCdlDPCD sin ma

CD ¼ 0; ð17aÞ

oklðb0
kl þ cklbklÞ þ 1

4
ð1� dk0Þakl #s

s
kl

� 1
8
dkCdlDðQCDaCDbCDbCM sin *mB þ QCMa2CDaCM sin *mAÞ

þ 1
8
dkCdlMQCMaCDb2

CD sin *mB � 1
2
dkCdlDPCD sin mb

CD ¼ 0; ð17bÞ
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oklakla0kl þ
1
8

aklðskl � gklkla
2
klÞ þ

1
4
ð1� dk0Þbkl #s

c
kl

þ 1
8
dkCdlD QCDaCDbCDaCM cos *mA þ QCMb2
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oklbklb
0
kl þ

1
8

bklðskl � gklklb
2
klÞ þ

1
4
ð1� dk0Þakl #s

c
kl

þ 1
8
dkCdlD QCDaCDbCDbCM cos *mB þ QCMa2
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2
dkCdlDPCD cos mb

CD ¼ 0; ð17dÞ

where primes denote differentiation with respect to T1;

skl ¼
XN

n¼�N

XN
m¼1

gklnmða
2
nm þ b2

nmÞ; ð18aÞ

#ss
kl ¼

XN
m¼1

#gklkmakmbkm sinðakm � bkm � akl þ bklÞ; ð18bÞ

#sc
kl ¼

XN
m¼1

ð1� dmlÞ#gklkmakmbkm cosðakm � bkm � akl þ bklÞ; ð18cÞ

ma
CD ¼ s2T1 þ tCD � aCD; mb

CD ¼ s2T1 � tCD � bCD; ð19a;bÞ

*mA ¼ s1T1 � 2aCD � bCD þ aCM ; *mB ¼ s1T1 � aCD � 2bCD þ bCM : ð19c;dÞ

Each equilibrium solution of the system of autonomous ordinary differential equations to be
obtained from system (17)–(19) is corresponding to a steady state response. The steady state
response to the first order approximation is given as follows:

w ¼ wCD þ wCM þ OðeÞ; ð20Þ

where

wCD ¼ fCDfaCD cosðlt � ma
CD þ Cyþ tCDÞ þ bCD cosðlt � mb

CD � Cy� tCDÞg; ð21Þ

wCM ¼fCM aCM cosð3lt � 2ma
CD � mb

CD þ *mA þ Cyþ tCDÞ
�

þbCM cosð3lt � ma
CD � 2mb

CD þ *mB � Cy� tCDÞ

: ð22Þ

Each of the wCD and wCM is a superposition of two traveling wave components.
If aCD ¼ bCD; aCM ¼ bCM ; ma

CD ¼ mb
CD and *mA ¼ *mB; Eqs. (21) and (22) can be reduced as

follows:

wCD ¼ 2fCDaCD cosðlt � ma
CDÞcosðCyþ tCDÞ; ð23Þ

wCM ¼ 2fCMaCM cosð3lt � 3ma
CD þ *mAÞcosðCyþ tCDÞ: ð24Þ

Now each of the wCD and wCM becomes a standing wave component.
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3. Numerical example

Pursuing the internal resonance condition oCME3oCD; we consider the case of C ¼ 1 for the
convenience. In order to choose a proper value of the stiffness of the elastic foundation, K ; we plot
the variations of the natural frequencies o1M and 3o1D with K in Fig. 2. For a numerical example
we choose the case of K ¼ 1239EK� (intersection of o13 and 3o11 in Fig. 2), which gives natural
frequencies o11 ¼ 41:7733 and o13 ¼ 125:348: Then we have an internal resonance condition
o13E3o11 with the internal detuning parameter es1 ¼ 0:0278555: Considering a primary
resonance lEo11 (the lower mode is directly excited) and substituting the relations of C ¼ D ¼
1 and M ¼ 3 into Eqs. (17)–(19), we obtain a simplified system of ordinary differential equations
for the non-decaying amplitudes as follows:

o11ða0
11 þ c11a11Þ þ 1

4
#g1113b11a13b13 sinða11 � b11 � a13 þ b13Þ

� 1
8

Q11a11b11a13 sin *mA þ Q13b
2
11b13 sin *mB


 �
� 1

2
P11 sin ma

11 ¼ 0; ð25aÞ

o11ðb0
11 þ c11b11Þ � 1

4
#g1113a11a13b13 sinða11 � b11 � a13 þ b13Þ

� 1
8

Q11a11b11b13 sin *mB þ Q13a
2
11a13 sin *mA


 �
� 1

2
P11 sin mb

11 ¼ 0; ð25bÞ
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1
8

a11 g1111ða
2
11 þ 2b2

11Þ þ 2g1113ða
2
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13Þ
� 
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4
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þ 1
8
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2
11b13 cos *mB


 �
þ 1

2
P11 cos ma

11 ¼ 0; ð25cÞ

o11b11b
0
11 þ

1
8

b11 g1111ð2a2
11 þ b2

11Þ þ 2g1113ða
2
13 þ b2

13Þ
� 

þ 1
4
#g1113a11a13b13 cosða11 � b11 � a13 þ b13Þ

þ 1
8

Q11a11b11b13 cos *mB þ Q13a
2
11a13 cos *mA


 �
þ 1

2
P11 cos mb

11 ¼ 0; ð25dÞ

o13ða0
13 þ c13a13Þ � 1

4
#g1311a11b11b13 sinða11 � b11 � a13 þ b13Þ þ

1
8

Q13a
2
11b11 sin *mA ¼ 0; ð26aÞ

o13ðb013 þ c13b13Þ þ 1
4
#g1311a11b11a13 sinða11 � b11 � a13 þ b13Þ þ

1
8

Q13a11b
2
11 sin *mB ¼ 0; ð26bÞ
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o13a13a013 þ
1
8

a13 2g1311ða
2
11 þ b2

11Þ þ g1313ða
2
13 þ 2b2

13Þ
� 

þ 1
4
#g1311a11b11b13 cosða11 � b11 � a13 þ b13Þ þ

1
8

Q13a
2
11b11 cos *mA ¼ 0; ð26cÞ

o13b13b
0
13 þ

1
8

b13 2g1311ða
2
11 þ b211Þ þ g1313ð2a213 þ b211Þ

� 
þ 1

4
#g1311a11b11a13 cosða11 � b11 � a13 þ b13Þ þ

1
8 Q13a11b

2
11 cos *mB ¼ 0; ð26dÞ

ma
11 ¼ s2T1 þ t11 � a11; mb

11 ¼ s2T1 � t11 � b11; ð27a;bÞ

*mA ¼ s1T1 � 2a11 � b11 þ a13; *mB ¼ s1T1 � a11 � 2b11 þ b13: ð27c;dÞ

Each equilibrium solution of a system of autonomous ordinary differential equations to be
obtained from systems (26) and (27) is corresponding to a steady state response (a0

11 ¼ b0
11 ¼

a013 ¼ b0
13 ¼ ma0

11 ¼ mb0

11 ¼ *m0A ¼ *m0B ¼ 0).
In Fig. 3 the amplitudes a11; b11; a13 and b13 are plotted as functions of the external detuning

parameter es2 ¼ #s2 when {n; e; ec; eP11; t11}={1/3, 0.001, 0.001, 5.0, 0.0}. Solid and dotted lines
denote, respectively, stable and unstable responses. The abbreviations SS, US, ST and UT denote,
respectively, stable standing, unstable standing, stable traveling and unstable traveling wave
components.
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The response curves are shown to have two pitchfork, ten saddle-node and seven Hopf
bifurcation points. At one of two pitchfork bifurcation points, #sA(0.012797), the stable standing
wave component SS1 bifurcates into two stable traveling wave components ST1 and ST2, and one
unstable standing wave component US. At the other pitchfork bifurcation point, #sB(0.021699),
the unstable standing wave component US appears to bifurcate into two stable traveling wave
components ST3 and ST4, and one unstable standing wave component US. In fact, at #s2 ¼
0:021675 not identified in the figure, the unstable component US becomes a stable component,
which bifurcates into ST3 and ST4. At four saddle-node bifurcation points out of 10, #sD

(0.042807), #sE (0.055153), #sG (0.067977) and #sJ (0.078646), one stable response and one unstable
response generate. At the other saddle-node bifurcation points (not marked in the figure), two
unstable responses generate.
It is observed that only traveling wave components experience Hopf bifurcations. The

components change their stability at seven Hopf bifurcation points #sC (0.022026), #sF (0.060973),
#sH (0.067977), #sI (0.072787), #sK (0.078647), #sL (0.088036) and #sM (0.091731). For instance, when
#sJo #s2o #sK and #sLo #s2o #sM ; there exist seven stable steady state responses, which consist of six
traveling wave components and one standing wave component. When #sEo #s2o #sF ; #sGo #s2o #sH ;
#sIo #s2o #sJ ; #sKo #s2o #sL and #s2o #sM ; there exist five stable steady state responses, which consist
of four traveling wave components and one standing wave component. When #sBo #s2o #sC and
#sDo #s2o #sE ; there exist four stable steady state responses, which are traveling wave components.
When #sFo #s2o #sG and #sHo #s2o #sI ; there exist three stable steady state responses, which consist of
two traveling wave components and one standing wave component. When #sFo #s2; #sHo #s2o #sI and
#sKo #s2; two pairs of traveling wave components, fST5;ST6g; fST7;ST8g and fST9;ST10g;
respectively, become unstable. Another pair of stable components {ST11, ST12} loses stability at
#s2 ¼ #sL and #sM : These instabilities imply that there may exist quasi-periodic or chaotic responses
generated from these pairs. Exploring this type of response, however, is beyond the scope of this work.
Conclusively, non-vanishing amplitudes of indirectly excited modes (a13 and b13) tell us modal

interactions between lower (o11) and higher (o13) modes. The characteristics of the responses in
this work are much more complicated than the three-to-one case (N ¼ 3C) [7].

4. Conclusions

In order to investigate the effect of the number of nodal diameters on non-linear interactions in
asymmetric vibrations of a circular plate on an elastic foundation, a primary resonance of the
plate is considered. The plate is assumed to have an internal resonance in which the ratio of the
natural frequencies of two asymmetric modes is three to one. It has been found that in order for
the modes to interact, the ratio of the numbers of nodal diameters of two modes must be either
three to one or one to one.
In this study the one-to-one case, in which the modes have the same number of nodal diameters, is

examined. More precisely, we consider a primary resonance case with an internal resonance
condition o13E3o11 and an external resonance condition lEo11 (the lower mode is directly
excited). Non-vanishing amplitudes of indirectly excited modes (a13 and b13) tell us modal
interactions between lower (o11) and higher (o13) modes. The characteristics of the interactions are
much more complicated than the three-to-one case (N ¼ 3C or o32E3o11) studied previously [7].
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Appendix A

1. Eq. (7):
The linear symmetric vibration modes fnmðrÞ corresponding to the natural frequencies onm are

given by

fnm ¼ knm JnðZnmrÞ �
JnðZnmÞ
InðZnmÞ

InðZnmrÞ
� �

: ðA:1Þ

The knm are chosen so that Z 1

0

rf2
nm dr ¼ 1: ðA:2Þ

The function Jn are Bessel function of the first kind of order n and the function In are modified
Bessel function of the first kind of order n: the Znm are the roots of InðZÞJ0nðZÞ � I0nðZÞJnðZÞ ¼ 0: The
natural frequencies onm are related with the eigenvalues Znm by the equation o2

nm ¼ Z4nm þ K :
f�nm ¼ fnm; o�nm ¼ onm and A�nm ¼ Bnm:
2. Eq. (11):

gklnm ¼ Gðkl; kl; nm;�nmÞ þ Gðkl;�nm; kl; nmÞ þ Gðkl; nm;�nm; klÞ; ðA:3Þ

#gklkm ¼ Gðkl; km; km;�klÞ þ Gðkl;�kl; km; kmÞ þ Gðkl; km;�kl; kmÞ; ðA:4Þ

where

Gðkl; cd; nm; pqÞ ¼
XN
b¼1

Gðnm; pq; abÞ #Gðcd; ab; klÞ; a ¼ k � c; p ¼ k � c � n; ðA:5Þ

Gðnm; pq; abÞ ¼ x�4
ab

Z 1

0

rcabEðnm; pqÞ dr; ðA:6Þ

#Gðcd; ab; klÞ ¼
Z 1

0

rfkl KEðcd; abÞ dr; ðA:7Þ

Eðnm; pqÞ ¼
�np

r2
f0

nm �
fnm

r

� �
f0

pq �
fpq

r

� �
�

1

2r
ðf0

nmf
0
pqÞ

0 þ
1

2r2
ðp2f00

nmfpq þ n2f00
pqfnmÞ; ðA:8Þ

KEðcd; abÞ ¼
f00

cd

r
c0

ab �
a2

r
cab

� �
þ

c00
ab

r
f

0

cd �
c2

r
fcd

� �
þ

2ac

r2
c0

ab �
1

r
cab

� �
f0

cd �
1

r
fcd

� �
; ðA:9Þ

and

cab ¼ *kab½JaðxabrÞ � *cabIaðxabrÞ�: ðA:10Þ
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The *kab are chosen so that Z 1

0

rc2
ab dr ¼ 1; ðA:11Þ

*cab ¼
½aða þ 1Þðnþ 1Þ � x2ab�JaðxabÞ � xabðnþ 1ÞJa�1ðxabÞ

½aða þ 1Þðnþ 1Þ þ x2ab�IaðxabÞ � xabðnþ 1ÞIa�1ðxabÞ
ðA:12Þ

and the xab are the roots of

a2ða þ 1Þðnþ 1Þ½JaðxabÞ � *cabIaðxabÞ� � a2xab nþ 1ð Þ½Ja�1ðxabÞ � *cabIa�1ðxabÞ�

þ ax2ab½JaðxabÞ þ *cabIaðxabÞ� � x3ab½Ja�1ðxabÞ þ *cabIa�1ðxabÞ� ¼ 0: ðA:13Þ

3. Eq. (14):

QCM ¼ 2GðCM;CD;CD;�CDÞ þ GðCM;�CD;CD;CDÞ; ðA:14Þ

QCD ¼ 2fGðCD;�CD;CD;CMÞ þ GðCD;CD;CM;�CDÞ þ GðCD;CM;CD;�CDÞg: ðA:15Þ
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